add stuff

This commit is contained in:
J / Jacob Babich
2022-04-13 14:13:33 -04:00
parent 816520ed77
commit 273d9308ec
14 changed files with 212 additions and 616 deletions

View File

@@ -1,13 +1,6 @@
[target.thumbv7m-none-eabi]
# uncomment this to make `cargo run` execute programs on QEMU
# runner = "qemu-system-arm -cpu cortex-m3 -machine lm3s6965evb -nographic -semihosting-config enable=on,target=native -kernel"
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
# uncomment ONE of these three option to make `cargo run` start a GDB session
# which option to pick depends on your system
# runner = "arm-none-eabi-gdb -q -x openocd.gdb"
# runner = "gdb-multiarch -q -x openocd.gdb"
# runner = "gdb -q -x openocd.gdb"
rustflags = [
# This is needed if your flash or ram addresses are not aligned to 0x10000 in memory.x
@@ -16,17 +9,6 @@ rustflags = [
# LLD (shipped with the Rust toolchain) is used as the default linker
"-C", "link-arg=-Tlink.x",
# if you run into problems with LLD switch to the GNU linker by commenting out
# this line
# "-C", "linker=arm-none-eabi-ld",
# if you need to link to pre-compiled C libraries provided by a C toolchain
# use GCC as the linker by commenting out both lines above and then
# uncommenting the three lines below
# "-C", "linker=arm-none-eabi-gcc",
# "-C", "link-arg=-Wl,-Tlink.x",
# "-C", "link-arg=-nostartfiles",
]
[build]

135
README.md
View File

@@ -1,135 +0,0 @@
# `cortex-m-quickstart`
> A template for building applications for ARM Cortex-M microcontrollers
This project is developed and maintained by the [Cortex-M team][team].
## Dependencies
To build embedded programs using this template you'll need:
- Rust 1.31, 1.30-beta, nightly-2018-09-13 or a newer toolchain. e.g. `rustup
default beta`
- The `cargo generate` subcommand. [Installation
instructions](https://github.com/ashleygwilliams/cargo-generate#installation).
- `rust-std` components (pre-compiled `core` crate) for the ARM Cortex-M
targets. Run:
``` console
$ rustup target add thumbv6m-none-eabi thumbv7m-none-eabi thumbv7em-none-eabi thumbv7em-none-eabihf
```
## Using this template
**NOTE**: This is the very short version that only covers building programs. For
the long version, which additionally covers flashing, running and debugging
programs, check [the embedded Rust book][book].
[book]: https://rust-embedded.github.io/book
0. Before we begin you need to identify some characteristics of the target
device as these will be used to configure the project:
- The ARM core. e.g. Cortex-M3.
- Does the ARM core include an FPU? Cortex-M4**F** and Cortex-M7**F** cores do.
- How much Flash memory and RAM does the target device has? e.g. 256 KiB of
Flash and 32 KiB of RAM.
- Where are Flash memory and RAM mapped in the address space? e.g. RAM is
commonly located at address `0x2000_0000`.
You can find this information in the data sheet or the reference manual of your
device.
In this example we'll be using the STM32F3DISCOVERY. This board contains an
STM32F303VCT6 microcontroller. This microcontroller has:
- A Cortex-M4F core that includes a single precision FPU
- 256 KiB of Flash located at address 0x0800_0000.
- 40 KiB of RAM located at address 0x2000_0000. (There's another RAM region but
for simplicity we'll ignore it).
1. Instantiate the template.
``` console
$ cargo generate --git https://github.com/rust-embedded/cortex-m-quickstart
Project Name: app
Creating project called `app`...
Done! New project created /tmp/app
$ cd app
```
2. Set a default compilation target. There are four options as mentioned at the
bottom of `.cargo/config`. For the STM32F303VCT6, which has a Cortex-M4F
core, we'll pick the `thumbv7em-none-eabihf` target.
``` console
$ tail -n6 .cargo/config
```
``` toml
[build]
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
# target = "thumbv7m-none-eabi" # Cortex-M3
# target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)
```
3. Enter the memory region information into the `memory.x` file.
``` console
$ cat memory.x
/* Linker script for the STM32F303VCT6 */
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
FLASH : ORIGIN = 0x08000000, LENGTH = 256K
RAM : ORIGIN = 0x20000000, LENGTH = 40K
}
```
4. Build the template application or one of the examples.
``` console
$ cargo build
```
## VS Code
This template includes launch configurations for debugging CortexM programs with Visual Studio Code located in the `.vscode/` directory.
See [.vscode/README.md](./.vscode/README.md) for more information.
If you're not using VS Code, you can safely delete the directory from the generated project.
# License
This template is licensed under either of
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or
http://www.apache.org/licenses/LICENSE-2.0)
- MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
at your option.
## Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
dual licensed as above, without any additional terms or conditions.
## Code of Conduct
Contribution to this crate is organized under the terms of the [Rust Code of
Conduct][CoC], the maintainer of this crate, the [Cortex-M team][team], promises
to intervene to uphold that code of conduct.
[CoC]: https://www.rust-lang.org/policies/code-of-conduct
[team]: https://github.com/rust-embedded/wg#the-cortex-m-team

View File

@@ -1,56 +0,0 @@
//! How to use the heap and a dynamic memory allocator
//!
//! This example depends on the alloc-cortex-m crate so you'll have to add it to your Cargo.toml:
//!
//! ``` text
//! # or edit the Cargo.toml file manually
//! $ cargo add alloc-cortex-m
//! ```
//!
//! ---
#![feature(alloc_error_handler)]
#![no_main]
#![no_std]
extern crate alloc;
use panic_halt as _;
use self::alloc::vec;
use core::alloc::Layout;
use alloc_cortex_m::CortexMHeap;
use cortex_m::asm;
use cortex_m_rt::entry;
use cortex_m_semihosting::{hprintln, debug};
// this is the allocator the application will use
#[global_allocator]
static ALLOCATOR: CortexMHeap = CortexMHeap::empty();
const HEAP_SIZE: usize = 1024; // in bytes
#[entry]
fn main() -> ! {
// Initialize the allocator BEFORE you use it
unsafe { ALLOCATOR.init(cortex_m_rt::heap_start() as usize, HEAP_SIZE) }
// Growable array allocated on the heap
let xs = vec![0, 1, 2];
hprintln!("{:?}", xs).unwrap();
// exit QEMU
// NOTE do not run this on hardware; it can corrupt OpenOCD state
debug::exit(debug::EXIT_SUCCESS);
loop {}
}
// define what happens in an Out Of Memory (OOM) condition
#[alloc_error_handler]
fn alloc_error(_layout: Layout) -> ! {
asm::bkpt();
loop {}
}

View File

@@ -1,96 +0,0 @@
//! Debugging a crash (exception)
//!
//! Most crash conditions trigger a hard fault exception, whose handler is defined via
//! `exception!(HardFault, ..)`. The `HardFault` handler has access to the exception frame, a
//! snapshot of the CPU registers at the moment of the exception.
//!
//! This program crashes and the `HardFault` handler prints to the console the contents of the
//! `ExceptionFrame` and then triggers a breakpoint. From that breakpoint one can see the backtrace
//! that led to the exception.
//!
//! ``` text
//! (gdb) continue
//! Program received signal SIGTRAP, Trace/breakpoint trap.
//! __bkpt () at asm/bkpt.s:3
//! 3 bkpt
//!
//! (gdb) backtrace
//! #0 __bkpt () at asm/bkpt.s:3
//! #1 0x080030b4 in cortex_m::asm::bkpt () at $$/cortex-m-0.5.0/src/asm.rs:19
//! #2 rust_begin_unwind (args=..., file=..., line=99, col=5) at $$/panic-semihosting-0.2.0/src/lib.rs:87
//! #3 0x08001d06 in core::panicking::panic_fmt () at libcore/panicking.rs:71
//! #4 0x080004a6 in crash::hard_fault (ef=0x20004fa0) at examples/crash.rs:99
//! #5 0x08000548 in UserHardFault (ef=0x20004fa0) at <exception macros>:10
//! #6 0x0800093a in HardFault () at asm.s:5
//! Backtrace stopped: previous frame identical to this frame (corrupt stack?)
//! ```
//!
//! In the console output one will find the state of the Program Counter (PC) register at the time
//! of the exception.
//!
//! ``` text
//! panicked at 'HardFault at ExceptionFrame {
//! r0: 0x2fffffff,
//! r1: 0x2fffffff,
//! r2: 0x080051d4,
//! r3: 0x080051d4,
//! r12: 0x20000000,
//! lr: 0x08000435,
//! pc: 0x08000ab6,
//! xpsr: 0x61000000
//! }', examples/crash.rs:106:5
//! ```
//!
//! This register contains the address of the instruction that caused the exception. In GDB one can
//! disassemble the program around this address to observe the instruction that caused the
//! exception.
//!
//! ``` text
//! (gdb) disassemble/m 0x08000ab6
//! Dump of assembler code for function core::ptr::read_volatile:
//! 451 pub unsafe fn read_volatile<T>(src: *const T) -> T {
//! 0x08000aae <+0>: sub sp, #16
//! 0x08000ab0 <+2>: mov r1, r0
//! 0x08000ab2 <+4>: str r0, [sp, #8]
//!
//! 452 intrinsics::volatile_load(src)
//! 0x08000ab4 <+6>: ldr r0, [sp, #8]
//! -> 0x08000ab6 <+8>: ldr r0, [r0, #0]
//! 0x08000ab8 <+10>: str r0, [sp, #12]
//! 0x08000aba <+12>: ldr r0, [sp, #12]
//! 0x08000abc <+14>: str r1, [sp, #4]
//! 0x08000abe <+16>: str r0, [sp, #0]
//! 0x08000ac0 <+18>: b.n 0x8000ac2 <core::ptr::read_volatile+20>
//!
//! 453 }
//! 0x08000ac2 <+20>: ldr r0, [sp, #0]
//! 0x08000ac4 <+22>: add sp, #16
//! 0x08000ac6 <+24>: bx lr
//!
//! End of assembler dump.
//! ```
//!
//! `ldr r0, [r0, #0]` caused the exception. This instruction tried to load (read) a 32-bit word
//! from the address stored in the register `r0`. Looking again at the contents of `ExceptionFrame`
//! we see that the `r0` contained the address `0x2FFF_FFFF` when this instruction was executed.
//!
//! ---
#![no_main]
#![no_std]
use panic_halt as _;
use core::ptr;
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
unsafe {
// read an address outside of the RAM region; this causes a HardFault exception
ptr::read_volatile(0x2FFF_FFFF as *const u32);
}
loop {}
}

View File

@@ -1,62 +0,0 @@
//! Using a device crate
//!
//! Crates generated using [`svd2rust`] are referred to as device crates. These crates provide an
//! API to access the peripherals of a device.
//!
//! [`svd2rust`]: https://crates.io/crates/svd2rust
//!
//! This example depends on the [`stm32f3`] crate so you'll have to
//! uncomment it in your Cargo.toml.
//!
//! [`stm32f3`]: https://crates.io/crates/stm32f3
//!
//! ```
//! $ edit Cargo.toml && tail $_
//! [dependencies.stm32f3]
//! features = ["stm32f303", "rt"]
//! version = "0.7.1"
//! ```
//!
//! You also need to set the build target to thumbv7em-none-eabihf,
//! typically by editing `.cargo/config` and uncommenting the relevant target line.
//!
//! ---
#![no_main]
#![no_std]
#[allow(unused_extern_crates)]
use panic_halt as _;
use cortex_m::peripheral::syst::SystClkSource;
use cortex_m_rt::entry;
use cortex_m_semihosting::hprint;
use stm32f3::stm32f303::{interrupt, Interrupt, NVIC};
#[entry]
fn main() -> ! {
let p = cortex_m::Peripherals::take().unwrap();
let mut syst = p.SYST;
let mut nvic = p.NVIC;
nvic.enable(Interrupt::EXTI0);
// configure the system timer to wrap around every second
syst.set_clock_source(SystClkSource::Core);
syst.set_reload(8_000_000); // 1s
syst.enable_counter();
loop {
// busy wait until the timer wraps around
while !syst.has_wrapped() {}
// trigger the `EXTI0` interrupt
NVIC::pend(Interrupt::EXTI0);
}
}
#[interrupt]
fn EXTI0() {
hprint!(".").unwrap();
}

View File

@@ -1,37 +0,0 @@
//! Overriding an exception handler
//!
//! You can override an exception handler using the [`#[exception]`][1] attribute.
//!
//! [1]: https://rust-embedded.github.io/cortex-m-rt/0.6.1/cortex_m_rt_macros/fn.exception.html
//!
//! ---
#![deny(unsafe_code)]
#![no_main]
#![no_std]
use panic_halt as _;
use cortex_m::peripheral::syst::SystClkSource;
use cortex_m::Peripherals;
use cortex_m_rt::{entry, exception};
use cortex_m_semihosting::hprint;
#[entry]
fn main() -> ! {
let p = Peripherals::take().unwrap();
let mut syst = p.SYST;
// configures the system timer to trigger a SysTick exception every second
syst.set_clock_source(SystClkSource::Core);
syst.set_reload(8_000_000); // period = 1s
syst.enable_counter();
syst.enable_interrupt();
loop {}
}
#[exception]
fn SysTick() {
hprint!(".").unwrap();
}

View File

@@ -1,20 +0,0 @@
//! Prints "Hello, world!" on the host console using semihosting
#![no_main]
#![no_std]
use panic_halt as _;
use cortex_m_rt::entry;
use cortex_m_semihosting::{debug, hprintln};
#[entry]
fn main() -> ! {
hprintln!("Hello, world!").unwrap();
// exit QEMU
// NOTE do not run this on hardware; it can corrupt OpenOCD state
// debug::exit(debug::EXIT_SUCCESS);
loop {}
}

View File

@@ -1,33 +0,0 @@
//! Sends "Hello, world!" through the ITM port 0
//!
//! ITM is much faster than semihosting. Like 4 orders of magnitude or so.
//!
//! **NOTE** Cortex-M0 chips don't support ITM.
//!
//! You'll have to connect the microcontroller's SWO pin to the SWD interface. Note that some
//! development boards don't provide this option.
//!
//! You'll need [`itmdump`] to receive the message on the host plus you'll need to uncomment two
//! `monitor` commands in the `.gdbinit` file.
//!
//! [`itmdump`]: https://docs.rs/itm/0.2.1/itm/
//!
//! ---
#![no_main]
#![no_std]
use panic_halt as _;
use cortex_m::{iprintln, Peripherals};
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
let mut p = Peripherals::take().unwrap();
let stim = &mut p.ITM.stim[0];
iprintln!(stim, "Hello, world!");
loop {}
}

View File

@@ -1,28 +0,0 @@
//! Changing the panicking behavior
//!
//! The easiest way to change the panicking behavior is to use a different [panic handler crate][0].
//!
//! [0]: https://crates.io/keywords/panic-impl
#![no_main]
#![no_std]
// Pick one of these panic handlers:
// `panic!` halts execution; the panic message is ignored
use panic_halt as _;
// Reports panic messages to the host stderr using semihosting
// NOTE to use this you need to uncomment the `panic-semihosting` dependency in Cargo.toml
// use panic_semihosting as _;
// Logs panic messages using the ITM (Instrumentation Trace Macrocell)
// NOTE to use this you need to uncomment the `panic-itm` dependency in Cargo.toml
// use panic_itm as _;
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
panic!("Oops")
}

View File

@@ -1,57 +0,0 @@
//! Conditionally compiling tests with std and our executable with no_std.
//!
//! Rust's built in unit testing framework requires the standard library,
//! but we need to build our final executable with no_std.
//! The testing framework also generates a `main` method, so we need to only use the `#[entry]`
//! annotation when building our final image.
//! For more information on why this example works, see this excellent blog post.
//! https://os.phil-opp.com/unit-testing/
//!
//! Running this example:
//!
//! Ensure there are no targets specified under `[build]` in `.cargo/config`
//! In order to make this work, we lose the convenience of having a default target that isn't the
//! host.
//!
//! cargo build --example test_on_host --target thumbv7m-none-eabi
//! cargo test --example test_on_host
#![cfg_attr(test, allow(unused_imports))]
#![cfg_attr(not(test), no_std)]
#![cfg_attr(not(test), no_main)]
// pick a panicking behavior
#[cfg(not(test))]
use panic_halt as _; // you can put a breakpoint on `rust_begin_unwind` to catch panics
// use panic_abort as _; // requires nightly
// use panic_itm as _; // logs messages over ITM; requires ITM support
// use panic_semihosting as _; // logs messages to the host stderr; requires a debugger
use cortex_m::asm;
use cortex_m_rt::entry;
#[cfg(not(test))]
#[entry]
fn main() -> ! {
asm::nop(); // To not have main optimize to abort in release mode, remove when you add code
loop {
// your code goes here
}
}
fn add(a: i32, b: i32) -> i32 {
a + b
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn foo() {
println!("tests work!");
assert!(2 == add(1,1));
}
}

View File

@@ -2,7 +2,7 @@
use core::ptr;
use crate::{Bit, L};
use crate::L;
pub unsafe fn read(address: *mut u32) -> u32 {
ptr::read_volatile(address)
@@ -41,11 +41,15 @@ pub unsafe fn write_bits<const N: usize>(address: *mut u32, bits: &[u32; N], val
})
}
pub unsafe fn update_bits<const N: usize, Updater: Fn([bool; N]) -> [bool; N]>(address: *mut u32, bits: &[Bit; N], updater: Updater) {
pub unsafe fn update_bits<Updater: Fn([bool; N]) -> [bool; N], const N: usize>(
address: *mut u32,
bits: &[u32; N],
updater: Updater,
) {
write_bits(address, bits, updater(read_bits(address, bits)))
}
pub unsafe fn set_bits(address: *mut u32, bits: &[Bit]) {
pub unsafe fn set_bits(address: *mut u32, bits: &[u32]) {
update(address, |current| {
let mut new = current;
@@ -57,7 +61,7 @@ pub unsafe fn set_bits(address: *mut u32, bits: &[Bit]) {
new
})
}
pub unsafe fn clear_bits(address: *mut u32, bits: &[Bit]) {
pub unsafe fn clear_bits(address: *mut u32, bits: &[u32]) {
update(address, |current| {
let mut new = current;
@@ -69,7 +73,7 @@ pub unsafe fn clear_bits(address: *mut u32, bits: &[Bit]) {
new
})
}
pub unsafe fn toggle_bits(address: *mut u32, bits: &[Bit]) {
pub unsafe fn toggle_bits(address: *mut u32, bits: &[u32]) {
update(address, |current| {
let mut new = current;

View File

@@ -15,7 +15,10 @@ impl Board {
let port_io = PortIO { port };
unsafe {
memory::set_bits(registers::system::RCGCGPIO, &[port_io.run_mode_clock_gate_control()]);
memory::set_bits(
registers::system::RCGCGPIO,
&[port_io.run_mode_clock_gate_control() as u32],
);
}
port_io
@@ -40,7 +43,17 @@ pub struct PortIO {
port: Port,
}
// TODO: refactor to just be self.base() + offset all the time - no matching
impl PortIO {
/// The memory address of the alternate function select (AFSEL) register for this port
fn alternate_function_select(&self) -> *mut u32 {
match self.port {
Port::A => registers::gpio::afsel::PORT_A,
Port::F => registers::gpio::afsel::PORT_F,
_ => todo!(),
}
}
/// The memory address of the analog mode select (AMSEL) register for this port
fn analog_mode_select(&self) -> *mut u32 {
match self.port {
@@ -92,7 +105,6 @@ impl PortIO {
Port::A => registers::gpio::pctl::PORT_A,
Port::F => registers::gpio::pctl::PORT_F,
_ => todo!(),
}
}
@@ -118,7 +130,6 @@ impl PortIO {
// Apparently also for ADC!
}
impl PortIO {
/// The corresponding bit for this port in system's run-mode clock gate control (RCGC) register
fn run_mode_clock_gate_control(&self) -> Bit {
@@ -143,25 +154,58 @@ impl PortIO {
unsafe {
memory::write(self.lock(), UNLOCK);
memory::set_bits(self.commit(), bits);
memory::set_bits(self.commit(), &bits.map(|bit| bit as u32));
}
// Disable analog when it's not selected (and enable analog if it is)
match options.function {
Function::Analog => unsafe {
memory::set_bits(self.analog_mode_select(), bits);
memory::set_bits(self.analog_mode_select(), &bits.map(|bit| bit as u32));
},
_ => unsafe {
memory::clear_bits(self.analog_mode_select(), bits);
memory::clear_bits(self.analog_mode_select(), &bits.map(|bit| bit as u32));
},
}
unsafe {
memory::clear_bits(self.direction(), bits);
memory::clear_bits(self.direction(), &bits.map(|bit| bit as u32));
}
for bit in bits {
let mut memory_bits = [0; 4];
let min = (*bit as u32) * 4;
let max = min + 3;
let range = min..=max;
for (i, memory_bit) in range.enumerate() {
memory_bits[i] = memory_bit;
}
let values = match options.function {
Function::Analog => todo!(),
Function::Digital => [L, L, L, L],
Function::CAN => todo!(),
Function::I2C => todo!(),
Function::PWM => todo!(),
Function::UART => todo!(),
};
unsafe {
memory::write_bits(self.port_control(), &memory_bits, values);
}
}
// TODO: finish
match options.pull_up {
Some(true) => todo!(),
Some(false) => todo!(),
None => todo!(),
}
let data_address = self.data();
let pins: [ReadablePin; N] = bits.map(|bit| ReadablePin { data_address, bit });
@@ -178,35 +222,44 @@ impl PortIO {
unsafe {
memory::write(self.lock(), UNLOCK);
memory::set_bits(self.commit(), bits);
memory::set_bits(self.commit(), &bits.map(|bit| bit as u32));
}
// Disable analog when it's not selected (and enable analog if it is)
match options.function {
Function::Analog => unsafe {
memory::set_bits(self.analog_mode_select(), bits);
memory::set_bits(self.analog_mode_select(), &bits.map(|bit| bit as u32));
},
_ => unsafe {
memory::clear_bits(self.analog_mode_select(), bits);
memory::clear_bits(self.analog_mode_select(), &bits.map(|bit| bit as u32));
},
}
unsafe {
memory::set_bits(self.direction(), bits);
memory::set_bits(self.direction(), &bits.map(|bit| bit as u32));
}
unsafe {
for bit in bits {
let memory_bits = [0; N];
let mut memory_bits = [0; 4];
let min = (*bit as u32) * 4;
let max = min + 3;
let range = min..=max;
for (i, memory_bit) in range.enumerate() {
memory_bits[i] = memory_bit;
}
let values = match options.function {
Function::Analog => todo!(),
Function::Digital => todo!(),
Function::Digital => [L, L, L, L],
Function::CAN => todo!(),
Function::I2C => todo!(),
Function::PWM => todo!(),
Function::UART => todo!(),
};
memory::write_bits(self.port_control(), memory_bits, values);
unsafe {
memory::write_bits(self.port_control(), &memory_bits, values);
}
}
@@ -214,6 +267,19 @@ impl PortIO {
// TODO: finish
match options.function {
Function::Analog | Function::Digital => {
unsafe {
memory::clear_bits(self.alternate_function_select(), &bits.map(|bit| bit as u32));
}
},
_ => {
unsafe {
memory::set_bits(self.alternate_function_select(), &bits.map(|bit| bit as u32));
}
},
}
let data_address = self.data();
let pins: [WritablePin; N] = bits.map(|bit| WritablePin { data_address, bit });
@@ -246,6 +312,7 @@ pub enum Function {
pub struct ReadablePinSetup {
pub function: Function,
pub pull_up: Option<bool>,
}
pub struct ReadablePins<const N: usize> {
data_address: *mut u32,
@@ -257,7 +324,7 @@ impl<const N: usize> ReadablePins<N> {
}
pub fn read_all(&self) -> [bool; N] {
unsafe { memory::read_bits(self.data_address, &self.pins.map(|pin| pin.bit)) }
unsafe { memory::read_bits(self.data_address, &self.pins.map(|pin| pin.bit as u32)) }
}
}
#[derive(Clone, Copy)]
@@ -285,10 +352,16 @@ impl<const N: usize> WritablePins<N> {
}
pub fn read_all(&self) -> [bool; N] {
unsafe { memory::read_bits(self.data_address, &self.pins.map(|pin| pin.bit)) }
unsafe { memory::read_bits(self.data_address, &self.pins.map(|pin| pin.bit as u32)) }
}
pub fn write_all(&mut self, values: [bool; N]) {
unsafe { memory::write_bits(self.data_address, &self.pins.map(|pin| pin.bit), values) }
unsafe {
memory::write_bits(
self.data_address,
&self.pins.map(|pin| pin.bit as u32),
values,
)
}
}
pub fn update_all<Updater: Fn([bool; N]) -> [bool; N]>(&mut self, updater: Updater) {
self.write_all(updater(self.read_all()));
@@ -296,17 +369,17 @@ impl<const N: usize> WritablePins<N> {
pub fn clear_all(&mut self) {
unsafe {
memory::clear_bits(self.data_address, &self.pins.map(|pin| pin.bit));
memory::clear_bits(self.data_address, &self.pins.map(|pin| pin.bit as u32));
}
}
pub fn set_all(&mut self) {
unsafe {
memory::set_bits(self.data_address, &self.pins.map(|pin| pin.bit));
memory::set_bits(self.data_address, &self.pins.map(|pin| pin.bit as u32));
}
}
pub fn toggle_all(&mut self) {
unsafe {
memory::toggle_bits(self.data_address, &self.pins.map(|pin| pin.bit));
memory::toggle_bits(self.data_address, &self.pins.map(|pin| pin.bit as u32));
}
}
}
@@ -323,17 +396,17 @@ impl WritablePin {
}
pub fn clear(&mut self) {
unsafe {
memory::clear_bits(self.data_address, &[self.bit]);
memory::clear_bits(self.data_address, &[self.bit as u32]);
}
}
pub fn set(&mut self) {
unsafe {
memory::set_bits(self.data_address, &[self.bit]);
memory::set_bits(self.data_address, &[self.bit as u32]);
}
}
pub fn toggle(&mut self) {
unsafe {
memory::toggle_bits(self.data_address, &[self.bit]);
memory::toggle_bits(self.data_address, &[self.bit as u32]);
}
}
}

59
src/main--ideas.rs Normal file
View File

@@ -0,0 +1,59 @@
#![no_std]
#![no_main]
use panic_halt as _;
use cortex_m_rt::entry;
use my_library::{Bit, Color, setup_board};
const H: bool = true;
const L: bool = false;
#[entry]
fn main() -> ! {
let board = setup_board();
let port_f = board.setup_port(Port::F);
let switches = port_f.setup_readable_pins([Bit::Zero, Bit::Four], PinSetup {
alternate_function: false,
analog: false,
pullup: true,
pctl: false,
});
let rgb_led = port_f.setup_writable_pins([Bit::One, Bit::Three, Bit::Two], PinSetup {
alternate_function: false,
analog: false,
pctl: false,
});
// Integrate PWM for arbitrary color support
let rgb_led_driver = rgb_led.driver();
// Maybe?
let every_5_seconds = board.time_trigger(5);
// Example of adding tasks
board.add_task(
some_kind_of_task,
10, // priority maybe?
every_5_seconds, // trigger every 5 seconds
);
loop {
match switches.read_all() {
[L, L] => rgb_led_driver.set_color(Color::Green),
[L, H] => rgb_led_driver.set_color(Color::Blue),
[H, L] => rgb_led_driver.set_color(Color::Red),
[H, H] => rgb_led_driver.set_color(Color::Black),
}
}
}
fn some_kind_of_task() {
// ...
}

View File

@@ -65,18 +65,18 @@ fn setup_port_f() {
// unsafe { ptr::write_volatile(GPIOAMSEL_PORT_F, 0x00) }
// 4) PCTL GPIO on PF4-0
unsafe {
ptr::write_volatile(GPIO_PORTF_PCTL_R, 0x00000000);
}
// unsafe {
// ptr::write_volatile(GPIO_PORTF_PCTL_R, 0x00000000);
// }
// 5) PF4,PF0 in, PF3-1 out
// unsafe {
// ptr::write_volatile(GPIO_PORTF_DIR_R, 0x0E);
// }
// 6) disable alt funct on PF7-0
unsafe {
ptr::write_volatile(GPIO_PORTF_AFSEL_R, 0x00);
}
// unsafe {
// ptr::write_volatile(GPIO_PORTF_AFSEL_R, 0x00);
// }
// enable pull-up on PF0 and PF4
unsafe {
ptr::write_volatile(GPIO_PORTF_PUR_R, 0x11);
@@ -99,42 +99,44 @@ fn output_to_port_f(value: u8) {
}
}
// #[entry]
// fn main() -> ! {
// let board = setup_board();
// let port_f = board.setup_gpio_port(Port::F, PortSetup);
// let switches = port_f.setup_readable_pins([Bit::Zero, Bit::Four], ReadablePinSetup);
// let [sw1, sw2] = switches.pins();
// let mut rgb_led = port_f.setup_writable_pins(&[Bit::One, Bit::Three, Bit::Two], WritablePinSetup { drive: PinDrive::Digital });
// loop {
// match switches.read_all() {
// [L, L] => rgb_led.write_all([L, H, L]),
// [L, H] => rgb_led.write_all([L, L, H]),
// [H, L] => rgb_led.write_all([L, H, L]),
// [H, H] => rgb_led.write_all([L, L, L]),
// }
// }
// }
#[entry]
fn main() -> ! {
setup_port_f();
let board = setup_board();
let port_f = board.setup_gpio_port(Port::F, PortSetup);
let switches = port_f.setup_readable_pins(&[Bit::Zero, Bit::Four], ReadablePinSetup {
function: Function::Digital,
});
let [sw1, sw2] = switches.pins();
let mut rgb_led = port_f.setup_writable_pins(&[Bit::One, Bit::Three, Bit::Two], WritablePinSetup { function: Function::Digital });
loop {
let status = input_from_port_f();
match switches.read_all() {
[L, L] => rgb_led.write_all([L, H, L]),
[L, H] => rgb_led.write_all([L, L, H]),
[H, L] => rgb_led.write_all([L, H, L]),
[H, H] => rgb_led.write_all([H, L, L]),
}
}
}
match status {
0x00 => output_to_port_f(RED | GREEN),
0x01 => output_to_port_f(RED),
0x10 => output_to_port_f(GREEN),
0x11 => output_to_port_f(BLACK),
// Impossible case
_ => output_to_port_f(BLUE),
}
}
}
// #[entry]
// fn main() -> ! {
// setup_port_f();
// loop {
// let status = input_from_port_f();
// match status {
// 0x00 => output_to_port_f(RED | GREEN),
// 0x01 => output_to_port_f(RED),
// 0x10 => output_to_port_f(GREEN),
// 0x11 => output_to_port_f(BLACK),
// // Impossible case
// _ => output_to_port_f(BLUE),
// }
// }
// }
// TODO: implement an extremely simple example of the task system (using a timer trigger) that is a traffic light (green -> yellow -> red -> green...)