Files
ece-475-tm4c123gxl-rust/src/main.rs
J / Jacob Babich d60800ae22 new
2022-04-14 16:03:09 -04:00

144 lines
4.2 KiB
Rust

#![no_std]
#![no_main]
use core::ptr;
use panic_halt as _; // you can put a breakpoint on `rust_begin_unwind` to catch panics
use cortex_m_rt::entry;
use test_cortex_m4_rust::{Function, Bit, ReadablePinSetup, WritablePinSetup, PortSetup, Port, setup_board, H, L};
// use test_cortex_m4_rust::setup_board;
// Begin .h file contents
// GPIO registers (PORTF)
const GPIO_PORTF_DATA_R: *mut u32 = 0x400253FC as *mut u32;
const GPIO_PORTF_DIR_R: *mut u32 = 0x40025400 as *mut u32;
const GPIO_PORTF_AFSEL_R: *mut u32 = 0x40025420 as *mut u32;
const GPIO_PORTF_PUR_R: *mut u32 = 0x40025510 as *mut u32;
const GPIO_PORTF_DEN_R: *mut u32 = 0x4002551C as *mut u32;
const GPIOLOCK_PORT_F: *mut u32 = 0x40025520 as *mut u32;
const GPIOCR_PORT_F: *mut u32 = 0x40025524 as *mut u32;
const GPIOAMSEL_PORT_F: *mut u32 = 0x40025528 as *mut u32;
const GPIO_PORTF_PCTL_R: *mut u32 = 0x4002552C as *mut u32;
const SYSCTL_RCGCPIO_R: *mut u32 = 0x400FE608 as *mut u32;
// Begin starter project contents
const GPIO_LOCK_KEY: *mut u32 = 0x4C4F434B as *mut u32;
const PF0: *mut u32 = 0x40025004 as *mut u32;
const PF4: *mut u32 = 0x40025040 as *mut u32;
const SWITCHES: *mut u32 = 0x40025044 as *mut u32;
const SW1: u8 = 0b0001_0000;
const SW2: u8 = 0b0000_0001;
const SYSCTL_RCGC2_GPIOF: *mut u32 = 0x00000020 as *mut u32;
const BLACK: u8 = 0b0000_0000;
const RED: u8 = 0b0000_0010;
const GREEN: u8 = 0b0000_1000;
const BLUE: u8 = 0b0000_0100;
fn setup_port_f() {
// 1) activate clock for Port F
// unsafe {
// ptr::write_volatile(
// SYSCTL_RCGCPIO_R,
// ptr::read_volatile(SYSCTL_RCGCPIO_R) | 0x00_00_00_20,
// );
// }
// Delay
// for _ in 0u8..2u8 {}
// 2) unlock GPIO Port F
// unsafe {
// ptr::write_volatile(GPIOLOCK_PORT_F, 0x4C4F434B);
// // allow changes to PF4-0
// // only PF0 needs to be unlocked, other bits can't be locked
// ptr::write_volatile(GPIOCR_PORT_F, 0b0001_1111);
// }
// 3) disable analog on PF
// unsafe { ptr::write_volatile(GPIOAMSEL_PORT_F, 0x00) }
// 4) PCTL GPIO on PF4-0
// unsafe {
// ptr::write_volatile(GPIO_PORTF_PCTL_R, 0x00000000);
// }
// 5) PF4,PF0 in, PF3-1 out
// unsafe {
// ptr::write_volatile(GPIO_PORTF_DIR_R, 0x0E);
// }
// 6) disable alt funct on PF7-0
// unsafe {
// ptr::write_volatile(GPIO_PORTF_AFSEL_R, 0x00);
// }
// enable pull-up on PF0 and PF4
// unsafe {
// ptr::write_volatile(GPIO_PORTF_PUR_R, 0x11);
// }
// 7) enable digital I/O on PF4-0
// unsafe {
// ptr::write_volatile(GPIO_PORTF_DEN_R, 0x1F);
// }
}
// fn input_from_port_f() -> u32 {
// unsafe {
// ptr::read_volatile(GPIO_PORTF_DATA_R) & u32::from(SW1 | SW2)
// }
// }
// fn output_to_port_f(value: u8) {
// unsafe {
// ptr::write_volatile(GPIO_PORTF_DATA_R, u32::from(value));
// }
// }
#[entry]
fn main() -> ! {
let board = setup_board();
let port_f = board.setup_gpio_port(Port::F, PortSetup);
let switches = port_f.setup_readable_pins(&[Bit::Zero, Bit::Four], ReadablePinSetup {
function: Function::Digital,
pull_up: Some(true),
});
let [sw1, sw2] = switches.pins();
let mut rgb_led = port_f.setup_writable_pins(&[Bit::One, Bit::Three, Bit::Two], WritablePinSetup { function: Function::Digital });
loop {
match switches.read_all() {
[L, L] => rgb_led.write_all([L, H, L]),
[L, H] => rgb_led.write_all([L, L, H]),
[H, L] => rgb_led.write_all([L, H, L]),
[H, H] => rgb_led.write_all([H, L, L]),
}
}
}
// #[entry]
// fn main() -> ! {
// setup_port_f();
// loop {
// let status = input_from_port_f();
// match status {
// 0x00 => output_to_port_f(RED | GREEN),
// 0x01 => output_to_port_f(RED),
// 0x10 => output_to_port_f(GREEN),
// 0x11 => output_to_port_f(BLACK),
// // Impossible case
// _ => output_to_port_f(BLUE),
// }
// }
// }
// TODO: implement an extremely simple example of the task system (using a timer trigger) that is a traffic light (green -> yellow -> red -> green...)