This commit is contained in:
J / Jacob Babich
2022-04-29 23:24:13 -04:00
parent 18e9a5d7de
commit 062441b5e2
12 changed files with 353 additions and 536 deletions

View File

@@ -3,7 +3,7 @@
use core::arch::asm;
use crate::gpio::ports::{
setup_port as setup_gpio_port, GPIOPortOptions, Port as GPIOPort, UsablePort as UsableGPIOPort,
setup_port as setup_gpio_port, Port as GPIOPort, UsablePort as UsableGPIOPort,
};
use crate::uart::{
setup_port as setup_uart_port, Port as UARTPort, PortOptions as UARTPortOptions,
@@ -22,15 +22,18 @@ impl Board {
0x400F_E000
}
/// The memory address of the GPIO Run mode clock gating control (RCGCGPIO) register for this port
/// The memory address of the GPIO Run mode clock gating control (RCGCGPIO) register for GPIO ports
///
/// Page 340 of data sheet
pub(crate) const fn gpio_run_mode_clock_gate_control(&self) -> *mut u32 {
pub(crate) const fn gpio_run_mode_clock_gating_control(&self) -> *mut u32 {
const OFFSET: u32 = 0x608;
(self.base() + OFFSET) as *mut u32
}
pub(crate) const fn run_mode_clock_gate_control_1(&self) -> *mut u32 {
/// The memory address of the TODO
///
/// Page TODO of data sheet
pub(crate) const fn run_mode_clock_gating_control_1(&self) -> *mut u32 {
const OFFSET: u32 = 0x104;
(self.base() + OFFSET) as *mut u32
}
@@ -42,23 +45,30 @@ pub struct UsableBoard {
}
impl UsableBoard {
fn no_op(&self) {
pub(crate) fn no_op(&self) {
unsafe {
asm!("nop");
}
}
pub(crate) fn no_ops(&self, n: u32) {
for _ in 0..n {
self.no_op();
}
}
}
impl UsableBoard {
pub fn setup_gpio_port(&mut self, port: GPIOPort, options: GPIOPortOptions) -> UsableGPIOPort {
setup_gpio_port(self.board, port, options)
pub fn setup_gpio_port(&mut self, port: GPIOPort) -> UsableGPIOPort {
setup_gpio_port(self.board, port)
}
pub fn setup_uart_port(&mut self, port: UARTPort, options: UARTPortOptions) -> UsableUARTPort {
setup_uart_port(self.board, port, options, &|| self.no_op())
setup_uart_port(self.board, port, options, &|n| self.no_ops(n))
}
}
/// Start using the driver and task library by setting up the TM4C123GXL board
pub fn setup_board() -> UsableBoard {
UsableBoard { board: Board }
}

View File

@@ -86,7 +86,7 @@ impl<const N: usize> WritablePins<N> {
)
}
}
pub fn update_all<Updater: Fn([bool; N]) -> [bool; N]>(&mut self, updater: Updater) {
pub fn update_all(&mut self, updater: &dyn Fn([bool; N]) -> [bool; N]) {
self.write_all(updater(self.read_all()));
}

View File

@@ -14,7 +14,7 @@ pub enum Port {
F,
}
pub struct GPIOPortOptions;
pub struct PortOptions;
impl Port {
/// The starting point of memory addresses corresponding to this GPIO register
@@ -160,11 +160,10 @@ impl UsablePort {
}
}
// TODO: remove unused port setup options
pub fn setup_port(board: Board, port: Port, _options: GPIOPortOptions) -> UsablePort {
pub fn setup_port(board: Board, port: Port) -> UsablePort {
unsafe {
memory::set_bits(
board.gpio_run_mode_clock_gate_control(),
board.gpio_run_mode_clock_gating_control(),
&[port.run_mode_clock_gate_control()],
);
}

View File

@@ -9,7 +9,7 @@ pub unsafe fn write(address: *mut u32, new: u32) {
ptr::write_volatile(address, new);
}
pub unsafe fn update<Updater: Fn(u32) -> u32>(address: *mut u32, updater: Updater) {
pub unsafe fn update(address: *mut u32, updater: &dyn Fn(u32) -> u32) {
write(address, updater(read(address)));
}
@@ -19,7 +19,7 @@ pub unsafe fn read_bits<const N: usize>(address: *const u32, bits: &[u32; N]) ->
bits.map(|bit| current & (1 << bit) != 0)
}
pub unsafe fn write_bits<const N: usize>(address: *mut u32, bits: &[u32; N], values: [bool; N]) {
update(address, |current| {
update(address, &|current| {
bits.iter().zip(values).fold(current, |result, (bit, set)| {
if set {
result | (1 << bit)
@@ -30,27 +30,19 @@ pub unsafe fn write_bits<const N: usize>(address: *mut u32, bits: &[u32; N], val
})
}
pub unsafe fn update_bits<Updater: Fn([bool; N]) -> [bool; N], const N: usize>(
address: *mut u32,
bits: &[u32; N],
updater: Updater,
) {
write_bits(address, bits, updater(read_bits(address, bits)))
}
pub unsafe fn set_bits(address: *mut u32, bits: &[u32]) {
update(address, |current| {
update(address, &|current| {
bits.iter().fold(current, |result, bit| result | (1 << bit))
})
}
pub unsafe fn clear_bits(address: *mut u32, bits: &[u32]) {
update(address, |current| {
update(address, &|current| {
bits.iter()
.fold(current, |result, bit| result & !(1 << bit))
})
}
pub unsafe fn toggle_bits(address: *mut u32, bits: &[u32]) {
update(address, |current| {
update(address, &|current| {
bits.iter().fold(current, |result, bit| result ^ (1 << bit))
})
}

View File

@@ -1,4 +1,5 @@
#![no_std]
#![feature(alloc_error_handler)]
mod board;
mod gpio;
@@ -8,7 +9,127 @@ mod utils;
pub use board::*;
pub use gpio::pins::*;
pub use gpio::ports::*;
pub use gpio::ports::{Port as GPIOPort, PortOptions as GPIOPortOptions};
pub use uart::{Port as UARTPort, PortOptions as UARTPortOptions, WordLength};
pub const H: bool = true;
pub const L: bool = false;
extern crate alloc;
use alloc::string::ToString;
use core::alloc::{GlobalAlloc, Layout};
use core::panic::PanicInfo;
use core::ptr;
const BLACK: [bool; 3] = [L, L, L];
const RED: [bool; 3] = [H, L, L];
const YELLOW: [bool; 3] = [H, H, L];
const CYAN: [bool; 3] = [L, H, H];
#[panic_handler]
fn panic(panic_info: &PanicInfo) -> ! {
let mut board = setup_board();
let mut port_f = board.setup_gpio_port(GPIOPort::F);
let mut rgb_led = port_f.setup_writable_pins(
[Pin::One, Pin::Three, Pin::Two],
WritablePinOptions {
function: Function::Digital,
},
);
// Set the LED to red in case setting up UART causes the system to hang
// and the loop where we flash red / cyan isn't reached
// (but there's no reason that should happen...)
rgb_led.write_all(RED);
let mut port_a = board.setup_gpio_port(GPIOPort::A);
let [_uart_0_rx] = port_a
.setup_readable_pins(
[Pin::Zero],
ReadablePinOptions {
function: Function::UART,
pull: Pull::Neither,
},
)
.pins();
let [mut uart_0_tx] = port_a
.setup_writable_pins(
[Pin::One],
WritablePinOptions {
function: Function::UART,
},
)
.pins();
let mut uart_0 = board.setup_uart_port(
UARTPort::Zero,
UARTPortOptions {
baud_rate: 115_200,
fifos: true,
word_length: WordLength::Eight,
},
);
// https://gist.github.com/fnky/458719343aabd01cfb17a3a4f7296797
uart_0.write_line(&mut uart_0_tx, "\x1b[31m");
uart_0.write_line(&mut uart_0_tx, &panic_info.to_string());
uart_0.write_line(&mut uart_0_tx, "\x1b[0m");
let pattern = [RED, BLACK, CYAN, BLACK];
loop {
for color in pattern {
rgb_led.write_all(color);
board.no_ops(1_000_000);
}
}
}
struct BumpPointerAlloc;
static mut HEAP: [u8; 0x1000] = [0; 0x1000];
static mut USED: usize = 0;
#[global_allocator]
static ALLOCATOR: BumpPointerAlloc = BumpPointerAlloc;
unsafe impl GlobalAlloc for BumpPointerAlloc {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
let size = layout.size();
if USED + size > HEAP.len() {
ptr::null_mut()
} else {
let pointer = &mut HEAP[USED] as *mut u8;
USED += size;
pointer
}
}
unsafe fn dealloc(&self, _: *mut u8, _: Layout) {}
}
#[alloc_error_handler]
fn alloc_error(_cause: Layout) -> ! {
let mut board = setup_board();
let mut port_f = board.setup_gpio_port(GPIOPort::F);
let mut rgb_led = port_f.setup_writable_pins(
[Pin::One, Pin::Three, Pin::Two],
WritablePinOptions {
function: Function::Digital,
},
);
let pattern = [YELLOW, BLACK, RED, BLACK];
loop {
for color in pattern {
rgb_led.write_all(color);
board.no_ops(1_000_000);
}
}
}

View File

@@ -1,4 +1,6 @@
use crate::{memory, Board};
use alloc::string::String;
use crate::{memory, Board, ReadablePin, WritablePin, H, L};
#[derive(Clone, Copy)]
pub enum Port {
@@ -11,8 +13,19 @@ pub enum Port {
Six = 6,
Seven = 7,
}
#[derive(Clone, Copy)]
pub enum WordLength {
Five,
Six,
Seven,
Eight,
}
pub struct PortOptions {
pub baud_rate: u32, // TODO: right type?
pub baud_rate: u32,
pub fifos: bool,
pub word_length: WordLength,
}
impl Port {
@@ -60,7 +73,7 @@ impl Port {
///
/// Page TODO of data sheet
pub(super) const fn fractional_baud_rate_divisor(&self) -> *mut u32 {
const OFFSET: u32 = 0x018; // TODO
const OFFSET: u32 = 0x028; // TODO
(self.base() + OFFSET) as *mut u32
}
@@ -68,9 +81,28 @@ impl Port {
///
/// Page TODO of data sheet
pub(super) const fn integer_baud_rate_divisor(&self) -> *mut u32 {
const OFFSET: u32 = 0x018; // TODO
const OFFSET: u32 = 0x024; // TODO
(self.base() + OFFSET) as *mut u32
}
/// The memory address of the line control (LCRH) register for this port
///
/// Page 916 of data sheet
pub(super) const fn line_control(&self) -> *mut u32 {
const OFFSET: u32 = 0x02C;
(self.base() + OFFSET) as *mut u32
}
}
impl Port {
/// The receive FIFO empty (RXFE) bit in the flag register
const fn receive_fifo_empty(&self) -> u32 {
4
}
/// The transmit FIFO full (TXFF) bit in the flag register
const fn transmit_fifo_full(&self) -> u32 {
5
}
}
impl Port {
@@ -79,17 +111,29 @@ impl Port {
0
}
/// The enable FIFOs (FEN) bit in the line control register
const fn enable_fifos_bit(&self) -> u32 {
4
}
/// The word length (WLEN) bits in the line control register
const fn word_length_bits(&self) -> [u32; 2] {
[6, 5]
}
}
impl Port {
/// The system's Run mode clock gating control (RCGC) register address containing this port
fn run_mode_clock_gate_control_address(&self, board: Board) -> *mut u32 {
const fn run_mode_clock_gating_control_address(&self, board: &Board) -> *mut u32 {
match self {
Port::Zero => board.run_mode_clock_gate_control_1(),
Port::One => board.run_mode_clock_gate_control_1(),
Port::Two => board.run_mode_clock_gate_control_1(),
Port::Zero => board.run_mode_clock_gating_control_1(),
Port::One => board.run_mode_clock_gating_control_1(),
Port::Two => board.run_mode_clock_gating_control_1(),
_ => todo!(),
}
}
/// The corresponding bit for this port in the system's Run mode clock gating control (RCGC) register
fn run_mode_clock_gate_control_bit(&self) -> u32 {
const fn run_mode_clock_gating_control_bit(&self) -> u32 {
match self {
Port::Zero => 0,
Port::One => 1,
@@ -104,25 +148,102 @@ pub struct UsablePort {
}
impl UsablePort {
pub fn do_something() {
todo!();
// TODO: add comments
pub fn read_byte(&self, _receive_pin: &ReadablePin, blocking: bool) -> Option<u8> {
loop {
let [receive_fifo_empty] =
unsafe { memory::read_bits(self.port.flag(), &[self.port.receive_fifo_empty()]) };
if !receive_fifo_empty {
let byte = unsafe { memory::read(self.port.data()) } as u8;
return Some(byte);
}
if !blocking {
return None;
}
}
}
pub fn write_byte(
&mut self,
_transmit_pin: &mut WritablePin,
byte: u8,
blocking: bool,
) -> bool {
loop {
let [transmit_fifo_full] =
unsafe { memory::read_bits(self.port.flag(), &[self.port.transmit_fifo_full()]) };
if !transmit_fifo_full {
unsafe { memory::write(self.port.data(), byte as u32) };
return true;
}
if !blocking {
return false;
}
}
}
pub fn write_string(&mut self, _transmit_pin: &mut WritablePin, string: &str) {
for byte in string.bytes() {
self.write_byte(_transmit_pin, byte, true);
}
}
pub fn write_line(&mut self, _transmit_pin: &mut WritablePin, string: &str) {
self.write_string(_transmit_pin, string);
self.write_string(_transmit_pin, "\r\n");
}
// TODO: validate the passed transmit or receive pin belongs to this UART port
pub fn read_line(
&mut self,
_transmit_pin: &mut WritablePin,
_receive_pin: &ReadablePin,
) -> String {
let mut s = String::new();
loop {
if let Some(c) = self.read_byte(_receive_pin, true) {
// Enter
if c == b'\r' {
self.write_string(_transmit_pin, "\r\n");
return s;
}
// Backspace
else if c == b'\x7F' {
if !s.is_empty() {
// https://stackoverflow.com/a/53976873
self.write_string(_transmit_pin, "\x1B[1D\x1B[1P");
s.pop();
}
} else {
self.write_byte(_transmit_pin, c, true);
s.push(c as char);
}
}
}
}
}
pub fn setup_port(board: Board, port: Port, options: PortOptions, no_op: &dyn Fn()) -> UsablePort {
pub fn setup_port(
board: Board,
port: Port,
options: PortOptions,
no_ops: &dyn Fn(u32),
) -> UsablePort {
// Activate the associated peripheral
unsafe {
memory::set_bits(
board.run_mode_clock_gate_control_1(),
&[port.run_mode_clock_gate_control_bit()],
port.run_mode_clock_gating_control_address(&board),
&[port.run_mode_clock_gating_control_bit()],
);
}
// Page 904: There must be a delay of 3 system clocks after the UART module clock is enabled before any UART module registers are accessed.
// But for some reason, 7 (not 3) no-ops are needed
for _ in 0..7 {
no_op();
}
// But in actuality, 7 (not 3) no-ops are needed for some reason
no_ops(7);
// Disable this UART port while setting it up
unsafe {
@@ -145,8 +266,7 @@ pub fn setup_port(board: Board, port: Port, options: PortOptions, no_op: &dyn Fn
// TODO: migrate all of the above comments to a github issue
// TODO: how do you determine what's being used as the system clock?!
let system_clock = SYSTEM_OSC_CLOCK_SPEED;
let system_clock = SYSTEM_OSC_CLOCK_SPEED;
// TODO: The UART generates an internal baud-rate reference clock at 8x or 16x the baud-rate (referred to
// as Baud8 and Baud16, depending on the setting of the HSE bit (bit 5) in UARTCTL)
@@ -158,21 +278,38 @@ pub fn setup_port(board: Board, port: Port, options: PortOptions, no_op: &dyn Fn
let baud_rate_divisor_fraction = baud_rate_divisor - (baud_rate_divisor_integer as f32);
// TODO:
// if baud_rate_divisor_integer.to_bits() > 22 {
// if baud_rate_divisor_integer.to_bits().length > 22 {
// panic!();
// }
let baud_rate_divisor_fraction = ((baud_rate_divisor_fraction * 64.0) + 0.5) as u8;
let baud_rate_divisor_fraction = ((baud_rate_divisor_fraction * 64.0) + 0.5) as u32;
// TODO: verify and comment
unsafe {
memory::write(port.integer_baud_rate_divisor(), baud_rate_divisor_integer);
memory::write(port.fractional_baud_rate_divisor(), baud_rate_divisor_fraction as u32);
memory::write(
port.fractional_baud_rate_divisor(),
baud_rate_divisor_fraction,
);
}
// TODO: CTL LCHR register
todo!();
// Set the word length
// Page 916 of data sheet
let word_length = match options.word_length {
WordLength::Five => [L, L],
WordLength::Six => [L, H],
WordLength::Seven => [H, L],
WordLength::Eight => [H, H],
};
unsafe {
memory::write_bits(port.line_control(), &port.word_length_bits(), word_length);
}
// Enable or disable FIFOs
let fifos = if options.fifos { [H] } else { [L] };
unsafe {
memory::write_bits(port.line_control(), &[port.enable_fifos_bit()], fifos);
}
// Enable this UART port
unsafe {

View File

@@ -1,59 +0,0 @@
#![no_std]
#![no_main]
use panic_halt as _;
use cortex_m_rt::entry;
use my_library::{Bit, Color, setup_board};
const H: bool = true;
const L: bool = false;
#[entry]
fn main() -> ! {
let board = setup_board();
let port_f = board.setup_port(Port::F);
let switches = port_f.setup_readable_pins([Bit::Zero, Bit::Four], PinSetup {
alternate_function: false,
analog: false,
pullup: true,
pctl: false,
});
let rgb_led = port_f.setup_writable_pins([Bit::One, Bit::Three, Bit::Two], PinSetup {
alternate_function: false,
analog: false,
pctl: false,
});
// Integrate PWM for arbitrary color support
let rgb_led_driver = rgb_led.driver();
// Maybe?
let every_5_seconds = board.time_trigger(5);
// Example of adding tasks
board.add_task(
some_kind_of_task,
10, // priority maybe?
every_5_seconds, // trigger every 5 seconds
);
loop {
match switches.read_all() {
[L, L] => rgb_led_driver.set_color(Color::Green),
[L, H] => rgb_led_driver.set_color(Color::Blue),
[H, L] => rgb_led_driver.set_color(Color::Red),
[H, H] => rgb_led_driver.set_color(Color::Black),
}
}
}
fn some_kind_of_task() {
// ...
}

View File

@@ -1,209 +1,31 @@
#![no_std]
#![no_main]
#![feature(default_alloc_error_handler)]
use core::{
alloc::{GlobalAlloc, Layout},
arch::asm,
cell::UnsafeCell,
ptr,
};
// Bump pointer allocator for *single* core systems
struct BumpPointerAlloc {
head: UnsafeCell<usize>,
end: usize,
}
unsafe impl Sync for BumpPointerAlloc {}
unsafe impl GlobalAlloc for BumpPointerAlloc {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
// `interrupt::free` is a critical section that makes our allocator safe
// to use from within interrupts
interrupt::free(|_| {
let head = self.head.get();
let size = layout.size();
let align = layout.align();
let align_mask = !(align - 1);
// move start up to the next alignment boundary
let start = (*head + align - 1) & align_mask;
if start + size > self.end {
// a null pointer signal an Out Of Memory condition
ptr::null_mut()
} else {
*head = start + size;
start as *mut u8
}
})
}
unsafe fn dealloc(&self, _: *mut u8, _: Layout) {
// this allocator never deallocates memory
}
}
// Declaration of the global memory allocator
// NOTE the user must ensure that the memory region `[0x2000_0100, 0x2000_0200]`
// is not used by other parts of the program
#[global_allocator]
static HEAP: BumpPointerAlloc = BumpPointerAlloc {
head: UnsafeCell::new(0x2000_0100),
end: 0x2000_0200,
};
// TODO: remove or fix
// #[macro_use]
extern crate alloc;
use alloc::string::String;
use cortex_m::interrupt;
use panic_halt as _; // you can put a breakpoint on `rust_begin_unwind` to catch panics
use alloc::format;
use cortex_m_rt::entry;
use driver_and_task_library::{
setup_board, Function, GPIOPortOptions, Pin, Port, Pull, ReadablePinOptions,
WritablePinOptions, H, L,
setup_board, Function, GPIOPort, Pin, Pull, ReadablePinOptions, UARTPort,
UARTPortOptions, WordLength, WritablePinOptions, H, L,
};
const SYSCTL_RCGC1_R: *mut u32 = 0x400FE104 as *mut u32;
/// UART0 data register
const UART0_DR_R: *mut u32 = 0x4000C000 as *mut u32;
/// UART0 flag register
const UART0_FR_R: *mut u32 = 0x4000C018 as *mut u32;
/// UART0 integer baud rate register
const UART0_IBRD_R: *mut u32 = 0x4000C024 as *mut u32;
/// UART0 fractional baud rate register
const UART0_FBRD_R: *mut u32 = 0x4000C028 as *mut u32;
/// UART0 line control register
const UART0_LCRH_R: *mut u32 = 0x4000C02C as *mut u32;
/// UART0 control register
const UART0_CTL_R: *mut u32 = 0x4000C030 as *mut u32;
const GPIO_PORTA_AFSEL_R: *mut u32 = 0x40004420 as *mut u32;
const GPIO_PORTA_DEN_R: *mut u32 = 0x4000451C as *mut u32;
/// UART0 Clock Gating Control
const SYSCTL_RCGC1_UART0: u32 = 0x00000001;
/// UART Enable
const UART_CTL_UARTEN: u32 = 0x00000001;
/// 8 bit word length
const UART_LCRH_WLEN_8: u32 = 0x00000060;
/// UART Enable FIFOs
const UART_LCRH_FEN: u32 = 0x00000010;
/// UART Transmit FIFO Full
const UART_FR_TXFF: u32 = 0x00000020;
/// UART Receive FIFO Empty
const UART_FR_RXFE: u32 = 0x00000010;
/// Pins 0 and 1
const PINS_0_AND_1: u32 = 0b0000_0011;
fn uart0_init() {
unsafe {
// activate UART0
ptr::write_volatile(
SYSCTL_RCGC1_R,
ptr::read_volatile(SYSCTL_RCGC1_R) | SYSCTL_RCGC1_UART0,
);
// write_color(MAGENTA);
// For some reason, 7 no-ops are needed to stall the CPU while UART is enabled
for _ in 0..7 {
asm!("nop");
}
// TODO / WIP: done up to here
// disable UART while setting it up
ptr::write_volatile(
UART0_CTL_R,
ptr::read_volatile(UART0_CTL_R) & !UART_CTL_UARTEN,
);
// IBRD = int(16,000,000 / (16 * 115,200)) = int(8.680)
// ptr::write_volatile(UART0_IBRD_R, 8);
ptr::write_volatile(UART0_IBRD_R, 8);
// ignore: // FBRD = int(0.1267 * 64 + 0.5) = 8
// FBRD = round(0.5104 * 64 ) = 33 --- that ain't the number you wrote but ok
// ptr::write_volatile(UART0_FBRD_R, 44);
ptr::write_volatile(UART0_FBRD_R, 44);
// 8 bit word length (no parity bits, one stop bit, FIFOs)
// ptr::write_volatile(UART0_LCRH_R, UART_LCRH_WLEN_8|UART_LCRH_FEN);
ptr::write_volatile(UART0_LCRH_R, UART_LCRH_WLEN_8 | UART_LCRH_FEN);
// enable UART since it's been set up
ptr::write_volatile(
UART0_CTL_R,
ptr::read_volatile(UART0_CTL_R) | UART_CTL_UARTEN,
);
// enable alt funct on PA1-0
ptr::write_volatile(
GPIO_PORTA_AFSEL_R,
ptr::read_volatile(GPIO_PORTA_AFSEL_R) | PINS_0_AND_1,
);
// enable digital I/O on PA1-0
ptr::write_volatile(
GPIO_PORTA_DEN_R,
ptr::read_volatile(GPIO_PORTA_AFSEL_R) | PINS_0_AND_1,
);
}
}
fn uart0_out_char_blocking(c: u8) {
loop {
let fr = unsafe { ptr::read_volatile(UART0_FR_R) };
if (fr & UART_FR_TXFF) == 0 {
break;
}
}
unsafe {
ptr::write_volatile(UART0_DR_R, c as u32);
}
}
fn uart0_out_string_blocking(s: &str) {
for c in s.bytes() {
uart0_out_char_blocking(c);
}
}
fn uart0_in_char_blocking() -> u8 {
loop {
let fr = unsafe { ptr::read_volatile(UART0_FR_R) };
if (fr & UART_FR_RXFE) == 0 {
break;
}
}
unsafe { ptr::read_volatile(UART0_DR_R) as u8 }
}
const WHITE: [bool; 3] = [H, H, H];
const BLACK: [bool; 3] = [L, L, L];
const RED: [bool; 3] = [H, L, L];
const YELLOW: [bool; 3] = [H, H, L];
const GREEN: [bool; 3] = [L, H, L];
const CYAN: [bool; 3] = [L, H, H];
const _YELLOW: [bool; 3] = [H, H, L];
const _GREEN: [bool; 3] = [L, H, L];
const _CYAN: [bool; 3] = [L, H, H];
const BLUE: [bool; 3] = [L, L, H];
const MAGENTA: [bool; 3] = [H, L, H];
const _MAGENTA: [bool; 3] = [H, L, H];
static _RAINBOW: [[bool; 3]; 6] = [RED, _YELLOW, _GREEN, _CYAN, BLUE, _MAGENTA];
#[entry]
fn main() -> ! {
let mut board = setup_board();
let mut port_a = board.setup_gpio_port(Port::A, GPIOPortOptions);
let mut port_f = board.setup_gpio_port(Port::F, GPIOPortOptions);
let mut port_f = board.setup_gpio_port(GPIOPort::F);
let switches = port_f.setup_readable_pins(
[Pin::Zero, Pin::Four],
ReadablePinOptions {
@@ -218,33 +40,35 @@ fn main() -> ! {
},
);
// TODO: finish this
uart0_init();
// WIP: page 682
port_a.setup_writable_pins(
[Pin::One],
WritablePinOptions {
function: Function::UART,
let mut port_a = board.setup_gpio_port(GPIOPort::A);
let [uart_0_rx] = port_a
.setup_readable_pins(
[Pin::Zero],
ReadablePinOptions {
function: Function::UART,
pull: Pull::Neither,
},
).pins();
let [mut uart_0_tx] = port_a
.setup_writable_pins(
[Pin::One],
WritablePinOptions {
function: Function::UART,
},
).pins();
let mut uart_0 = board.setup_uart_port(
UARTPort::Zero,
UARTPortOptions {
baud_rate: 115_200,
fifos: true,
word_length: WordLength::Eight,
},
);
uart0_out_string_blocking("Hi, this is after!! uart setup_writable_pins\r\n\r\n");
port_a.setup_readable_pins(
[Pin::Zero],
ReadablePinOptions {
function: Function::UART,
pull: Pull::Neither,
},
);
uart0_out_string_blocking("Hi, this is after uart setup_readable_pins\r\n\r\n");
let rainbow = [RED, YELLOW, GREEN, CYAN, BLUE, MAGENTA];
// TODO: WIP: debugging
let s = String::from("\r\ntesting a static string!!!\r\n\r\n\r\n");
uart0_out_string_blocking(&s);
uart_0.write_line(&mut uart_0_tx, "");
uart_0.write_line(&mut uart_0_tx, "Program start!");
loop {
// uart0_out_string_blocking("Hi still running down here!\r\n");
match switches.read_all() {
[L, L] => rgb_led.write_all(WHITE),
[L, H] => rgb_led.write_all(BLUE),
@@ -252,17 +76,8 @@ fn main() -> ! {
[H, H] => rgb_led.write_all(BLACK),
}
// uart0_out_string(&format!("The switches read {:?}", switches.read_all()));
// for _ in 0..1000000 {
// unsafe {
// asm!("nop");
// }
// }
let new_char = uart0_in_char_blocking();
uart0_out_string_blocking("New character received: ");
uart0_out_char_blocking(new_char);
uart0_out_string_blocking("\r\n");
uart_0.write_string(&mut uart_0_tx, "What's your name? ");
let input = uart_0.read_line(&mut uart_0_tx, &uart_0_rx);
uart_0.write_line(&mut uart_0_tx, &format!("Good afternoon {:?}!", &input));
}
}